Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637508

RESUMO

Samples of brown carbon (BrC) material were collected from smoke emissions originating from wood pyrolysis experiments, serving as a proxy for BrC representative of biomass burning emissions. The acquired samples, referred to as "pyrolysis oil (PO1)," underwent subsequent processing by thermal evaporation of their volatile compounds, resulting in a set of three additional samples with volume reduction factors of 1.33, 2, and 3, denoted as PO1.33, PO2, and PO3. The chemical compositions of these POx samples and their BrC chromophore features were analyzed using a high-performance liquid chromatography instrument coupled with a photodiode array detector and a high-resolution mass spectrometer. The investigation revealed a noteworthy twofold enhancement of BrC light absorption observed for the progression of PO1 to PO3 samples, assessed across the spectral range of 300-500 nm. Concurrently, a decrease in the absorption Ångstrom exponent (AAE) from 11 to 7 was observed, indicating a weaker spectral dependence. The relative enhancement of BrC absorption at longer wavelengths was more significant, as exemplified by the increased mass absorption coefficient (MAC) measured at 405 nm from 0.1 to 0.5 m2/g. Molecular characterization further supports this darkening trend, manifesting as a depletion of small oxygenated, less absorbing monoaromatic compounds and the retention of relatively large, less polar, more absorbing constituents. Noteworthy alterations of the PO1 to PO3 mixtures included a reduction in the saturation vapor pressure of their components and an increase in viscosity. These changes were quantified by the mean values shifting from approximately 1.8 × 103 µg/m3 to 2.3 µg/m3 and from ∼103 Pa·s to ∼106 Pa·s, respectively. These results provide quantitative insights into the extent of BrC aerosol darkening during atmospheric aging through nonreactive evaporation. This new understanding will inform the refinement of atmospheric and chemical transport models.

2.
J Anim Ecol ; 93(4): 377-392, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38482727

RESUMO

Climate change has well-documented, yet variable, influences on the annual movements of migratory birds. The effects of climate change on fall migration remains understudied compared with spring but appears to be less consistent among species, regions and years. Changes in the pattern and timing of waterfowl migration in particular may result in cascading effects on ecosystem function, and socio-economic and cultural outcomes. We investigated changes in the migration of 15 waterfowl species along a major flyway corridor of continental importance in northeastern North America using 43 years of community-science data. We built spatially- and temporally explicit hierarchical generative additive models for each species and demonstrated that climate, specifically the interaction between minimum temperature and precipitation, significantly influences migration phenology for most species. Certain species' migratory movements responded to specific temperature thresholds (climate migrants) and others reacted more to the interaction of temperature and precipitation (extreme event migrants). There are already significant changes in the fall migration phenology of common waterfowl species with high ecological and economic importance, which may simply increase in the context of a changing climate. If not addressed, climate change could induce mismatches in management, regulations and population surveys which would negatively impact the hunting industry. Our findings highlight the importance of considering species-specific spatiotemporal scales of effect on climate on migration and our methods can be widely adapted to quantify and forecast climate-driven changes in wildlife migration.


Les changements climatiques ont des influences bien documentées, mais variables, sur les mouvements annuels des oiseaux migrateurs. Les effets des changements climatiques sur les migrations automnales demeurent peu étudiés par rapport aux migrations printanières, mais il semble qu'ils soient moins constants d'une espèce, d'une région et d'une année à l'autre. Les changements dans le patron et le calendrier de la migration de la sauvagine en particulier peuvent avoir des effets en chaîne sur la fonction des écosystèmes et des impacts socio­économiques et culturels. Nous avons étudié les changements dans la migration de 15 espèces de sauvagine le long d'un corridor de migration d'importance continentale dans le nord­est de l'Amérique du Nord, en utilisant 43 ans de données scientifiques communautaires. Nous avons construit des modèles additifs généralisés hiérarchiques spatialement et temporellement explicites pour chaque espèce et avons démontré que le climat, en particulier l'interaction entre la température minimale et les précipitations, influence de manière significative la phénologie de la migration pour la plupart des espèces. Les mouvements migratoires de certaines espèces répondent à des seuils de température spécifiques (migrateurs climatiques) et d'autres réagissent davantage à l'interaction entre la température et les précipitations (migrateurs d'événements extrêmes). La phénologie des migrations automnales d'espèces de sauvagine commune qui ont une grande importance écologique et économique connaît déjà des changements importants, qui pourraient simplement s'accentuer dans le cadre des changements climatiques. S'ils ne sont pas pris en compte, les changements climatiques pourraient induire des décalages dans la gestion, les réglementations et les enquêtes de population, ce qui aurait un impact négatif sur l'industrie de la chasse. Nos résultats soulignent l'importance de prendre en compte les échelles spatio­temporelles spécifiques sur la migration et nos méthodes peuvent être largement adaptées pour quantifier et prévoir les changements induits par le climat dans la migration de la faune.


Assuntos
Migração Animal , Ecossistema , Animais , Estações do Ano , Temperatura , Mudança Climática
3.
Environ Sci Process Impacts ; 25(10): 1718-1731, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37781874

RESUMO

Microplastic particles are of increasing environmental concern due to the widespread uncontrolled degradation of various commercial products made of plastic and their associated waste disposal. Recently, common technology used to repair sewer pipes was reported as one of the emission sources of airborne microplastics in urban areas. This research presents results of the multi-modal comprehensive chemical characterization of the microplastic particles related to waste discharged in the pipe repair process and compares particle composition with the components of uncured resin and cured plastic composite used in the process. Analysis of these materials employs complementary use of surface-enhanced Raman spectroscopy, scanning transmission X-ray spectro-microscopy, single particle mass spectrometry, and direct analysis in real-time high-resolution mass spectrometry. It is shown that the composition of the relatively large (100 µm) microplastic particles resembles components of plastic material used in the process. In contrast, the composition of the smaller (micrometer and sub-micrometer) particles is significantly different, suggesting their formation from unintended polymerization of water-soluble components occurring in drying droplets of the air-discharged waste. In addition, resin material type influences the composition of released microplastic particles. Results are further discussed to guide the detection and advanced characterization of airborne microplastics in future field and laboratory studies pertaining to sewer pipe repair technology.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Água/análise , Espectrometria de Massas , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
4.
Environ Sci Process Impacts ; 25(10): 1670-1683, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37682218

RESUMO

Air-discharged waste from commonly used trenchless technologies of sewer pipe repairs is an emerging and poorly characterized source of urban pollution. This study reports on the molecular-level characterization of the atmospherically discharged aqueous-phase waste condensate samples collected at four field sites of the sewer pipe repairs. The molecular composition of organic species in these samples was investigated using reversed-phase liquid chromatography coupled with a photodiode array detector and a high-resolution mass spectrometer equipped with interchangeable atmospheric pressure photoionization and electrospray ionization sources. The waste condensate components comprise a complex mixture of organic species that can partition between gas-, aqueous-, and solid-phases when water evaporates from the air-discharged waste. Identified organic species have broad variability in molecular weight, molecular structures, and carbon oxidation state, which also varied between the waste samples. All condensates contained complex mixtures of oxidized organics, N- and S-containing organics, condensed aromatics, and their functionalized derivatives that are directly released to the atmospheric environment during installations. Furthermore, semi-volatile, low volatility, and extremely low volatility organic compounds comprise 75-85% of the total compounds identified in the waste condensates. Estimates of the component-specific viscosities suggest that upon evaporation of water waste material would form the semi-solid and solid phases. The low volatilities and high viscosities of chemical components in these waste condensates will contribute to the formation of atmospheric secondary organic aerosols and atmospheric solid nanoplastic particles. Lastly, selected components expected in the condensates were quantified and found to be present at high concentrations (1-20 mg L-1) that may exceed regulatory limits.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Espectrometria de Massas , Água , Aerossóis/análise
5.
Anal Chem ; 95(19): 7403-7408, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37126857

RESUMO

Atmospheric organic aerosols (OA) have profound effects on air quality, visibility, and radiative forcing of climate. Quantitative assessment of gas-particle equilibrium of OA components is critical to understand formation, growth, distribution, and evolution of OA in the atmosphere. This study presents a novel ambient pressure measurement approach developed and tested for untargeted screening of individual components in complex OA mixtures, followed by targeted chemical speciation of identified species and assessment of their physicochemical properties such as saturation vapor pressure and enthalpies of sublimation/evaporation. The method employs temperature-programmed desorption (TPD) experiments coupled to "direct analysis in real time" (DART) ionization source and high resolution mass spectrometry (HRMS) detection. Progression of the mass spectra is acquired in the TPD experiments over a T = 25-350 °C temperature range, and extracted ion chromatograms (EIC) of individual species are used to infer their apparent enthalpies of sublimation/evaporation (ΔHsub*) and saturation vapor pressure (pT*, Pa, or CT*, µg m-3) as a function of T. We validate application of this method for analysis of selected organic compounds with known ΔHsub and CT values, which showed excellent agreement between our results and the existing data. We then extend these experiments to interrogate individual components in complex OA samples generated in the laboratory-controlled ozonolysis of α-pinene, limonene, and ß-ocimene monoterpenes. The abundant OA species of interest are distinguished based on their accurate mass measurements, followed by quantitation of their apparent ΔHsub* and CT* values from the corresponding EIC records. Comparison of C298K* values derived from our experiments for the individual OA components with the corresponding estimates based on their elemental composition using a "molecular corridors" (MC) parametrization suggests that the MC calculations tend to overestimate the saturation vapor pressures of OA components. Presented results indicate very promising applicability of the TPD-DART-HRMS method for the untargeted analysis of organic molecules in OA and other environmental mixtures, enabling rapid detection and quantification of organic pollutants in the real-world condensed-phase samples at atmospheric pressure and without sample preparation.

6.
J Phys Chem A ; 127(7): 1656-1674, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36763810

RESUMO

Secondary organic aerosol (SOA) formed through multiphase atmospheric chemistry makes up a large fraction of airborne particles. The chemical composition and molecular structures of SOA constituents vary between different emission sources and aging processes in the atmosphere, which complicates their identification. In this work, we employ drift tube ion mobility spectrometry with quadrupole time-of-flight mass spectrometry (IM-MS) detection for rapid gas-phase separation and multidimensional characterization of isomers in two biogenic SOAs produced from ozonolysis of isomeric monoterpenes, d-limonene (LSOA) and α-pinene (PSOA). SOA samples were ionized using electrospray ionization (ESI) and characterized using IM-MS in both positive and negative ionization modes. The IM-derived collision cross sections in nitrogen gas (DTCCSN2 ) for individual SOA components were obtained using multifield and single-field measurements. A novel application of IM multiplexing/high-resolution demultiplexing methodology was employed to increase sensitivity, improve peak shapes, and augment mobility baseline resolution, which revealed several isomeric structures for the measured ions. For LSOA and PSOA samples, we report significant structural differences of the isomer structures. Molecular structural calculations using density functional theory combined with the theoretical modeling of CCS values provide insights into the structural differences between LSOA and PSOA constituents. The average DTCCSN2 values for monomeric SOA components observed as [M + Na]+ ions are 3-6% higher than those of their [M - H]- counterparts. Meanwhile, dimeric and trimeric isomer components in both samples showed an inverse trend with the relevant values of [M - H]- ions being 3-7% higher than their [M + Na]+ counterparts, respectively. The results indicate that the structures of Na+-coordinated oligomeric ions are more compact than those of the corresponding deprotonated species. The coordination with Na+ occurs on the oxygen atoms of the carbonyl groups leading to a compact configuration. Meanwhile, deprotonated molecules have higher DTCCSN2 values due to their elongated structures in the gas phase. Therefore, DTCCSN2 values of isomers in SOA mixtures depend strongly on the mode of ionization in ESI. Additionally, PSOA monomers and dimers exhibit larger DTCCSN2 values (1-4%) than their LSOA counterparts owing to more rigid structures. A cyclobutane ring is present with functional groups pointing in opposite directions in PSOA compounds, as compared to noncyclic flexible LSOA structures, forming more compact ions in the gas phase. Lastly, we investigated the effects of direct photolysis on the chemical transformations of selected individual PSOA components. We use IM-MS to reveal structural changes associated with aerosol aging by photolysis. This study illustrates the detailed molecular and structural descriptors for the detection and annotation of structural isomers in complex SOA mixtures.

7.
Environ Sci Process Impacts ; 25(2): 190-213, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35634912

RESUMO

Iron (Fe) is ubiquitous in nature and found as FeII or FeIII in minerals or as dissolved ions Fe2+ or Fe3+ in aqueous systems. The interactions of soluble Fe have important implications for fresh water and marine biogeochemical cycles, which have impacts on global terrestrial and atmospheric environments. Upon dissolution of FeIII into natural aquatic systems, organic carboxylic acids efficiently chelate FeIII to form [FeIII-carboxylate]2+ complexes that undergo a wide range of photochemistry-induced radical reactions. The chemical composition and photochemical transformations of these mixtures are largely unknown, making it challenging to estimate their environmental impact. To investigate the photochemical process of FeIII-carboxylates at the molecular level, we conduct a comprehensive experimental study employing UV-visible spectroscopy, liquid chromatography coupled to photodiode array and high-resolution mass spectrometry detection, and oil immersion flow microscopy. In this study, aqueous solutions of FeIII-citrate were photolyzed under 365 nm light in an experimental setup with an apparent quantum yield of (φ) ∼0.02, followed by chemical analyses of reacted mixtures withdrawn at increment time intervals of the experiment. The apparent photochemical reaction kinetics of Fe3+-citrates (aq) were expressed as two generalized consecutive reactions of with the experimental rate constants of j1 ∼ 0.12 min-1 and j2 ∼ 0.05 min-1, respectively. Molecular characterization results indicate that R and I consist of both water-soluble organic and Fe-organic species, while P compounds are a mixture of water-soluble and colloidal materials. The latter were identified as Fe-carbonaceous colloids formed at long photolysis times. The carbonaceous content of these colloids was identified as unsaturated organic species with low oxygen content and carbon with a reduced oxidation state, indicative of their plausible radical recombination mechanism under oxygen-deprived conditions typical for the extensively photolyzed mixtures. Based on the molecular characterization results, we discuss the comprehensive reaction mechanism of FeIII-citrate photochemistry and report on the formation of previously unexplored colloidal reaction products, which may contribute to atmospheric and terrestrial light-absorbing materials in aquatic environments.


Assuntos
Ácido Cítrico , Compostos Férricos , Ácido Cítrico/química , Compostos Férricos/química , Cromatografia Gasosa-Espectrometria de Massas , Citratos , Ácidos Carboxílicos/química , Água/química , Oxirredução , Coloides , Oxigênio
8.
Nat Nanotechnol ; 17(11): 1171-1177, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36203091

RESUMO

Nanoplastic particles are inadequately characterized environmental pollutants that have adverse effects on aquatic and atmospheric systems, causing detrimental effects to human health through inhalation, ingestion and skin penetration1-3. At present, it is explicitly assumed that environmental nanoplastics (EnvNPs) are weathering fragments of microplastic or larger plastic debris that have been discharged into terrestrial and aquatic environments, while atmospheric EnvNPs are attributed solely to aerosolization by wind and other mechanical forces. However, the sources and emissions of unintended EnvNPs are poorly understood and are therefore largely unaccounted for in various risk assessments4. Here we show that large quantities of EnvNPs may be directly emitted into the atmosphere as steam-laden waste components discharged from a technology commonly used to repair sewer pipes in urban areas. A comprehensive chemical analysis of the discharged waste condensate has revealed the abundant presence of insoluble colloids, which after drying form solid organic particles with a composition and viscosity consistent with EnvNPs. We suggest that airborne emissions of EnvNPs from these globally used sewer repair practices may be prevalent in highly populated urban areas5, and may have important implications for air quality and toxicological levels that need to be mitigated.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos/análise , Plásticos/química , Atmosfera , Monitoramento Ambiental , Poluentes Químicos da Água/análise
9.
Environ Sci Technol ; 56(8): 4816-4827, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35384654

RESUMO

Secondary organic aerosols (SOAs) affect incoming solar radiation by interacting with light at ultraviolet and visible wavelength ranges. However, the relationship between the chemical composition and optical properties of SOA is still not well understood. In this study, the complex refractive index (RI) of SOA produced from OH oxidation of naphthalene in the presence of nitrogen oxides (NOx) was retrieved online in the wavelength range of 315-650 nm and the bulk chemical composition of the SOA was characterized by an online high-resolution time-of-flight mass spectrometer. In addition, the molecular-level composition of brown carbon chromophores was determined using high-performance liquid chromatography coupled to a photodiode array detector and a high-resolution mass spectrometer. The real part of the RI of the SOA increases with both the NOx/naphthalene ratio and aging time, likely due to the increased mean polarizability and decreased molecular weight due to fragmentation. Highly absorbing nitroaromatics (e.g., C6H5NO4, C7H7NO4, C7H5NO5, C8H5NO5) produced under higher NOx conditions contribute significantly to the light absorption of the SOA. The imaginary part of the RI linearly increases with the NOx/VOCs ratio due to the formation of nitroaromatic compounds. As a function of aging, the imaginary RI increases with the O/C ratio (slope = 0.024), mainly attributed to the achieved higher NOx/VOCs ratio, which favors the formation of light-absorbing nitroaromatics. The light-absorbing enhancement is not as significant with extensive aging as it is under a lower aging time due to the opening of aromatic rings by reactions.


Assuntos
Naftalenos , Óxidos de Nitrogênio , Aerossóis/química , Carbono/química , Oxirredução
10.
Acta physiol. pharmacol. latinoam ; 39(1): 9-13, 1989. tab
Artigo em Inglês | LILACS | ID: lil-76845

RESUMO

La glucorregulación de 17 pacientes diabéticos del tipo II mejoró al administrar paralelamente 3 gm/día de ácido acetilsalicílico durante un año. Los pacientes no perdieron peso durante el experimento, pero la insulina requerida en 7 pacientes si disminuyó en un 60%


Assuntos
Adulto , Pessoa de Meia-Idade , Humanos , Masculino , Feminino , Aspirina/farmacologia , Glicemia/análise , Diabetes Mellitus Tipo 2/sangue , Insulina/sangue , Aspirina/administração & dosagem , Peso Corporal , Insulina/administração & dosagem
11.
Acta physiol. pharmacol. latinoam ; 39(1): 9-13, 1989. Tab
Artigo em Inglês | BINACIS | ID: bin-28744

RESUMO

La glucorregulación de 17 pacientes diabéticos del tipo II mejoró al administrar paralelamente 3 gm/día de ácido acetilsalicílico durante un año. Los pacientes no perdieron peso durante el experimento, pero la insulina requerida en 7 pacientes si disminuyó en un 60% (AU)


Assuntos
Adulto , Pessoa de Meia-Idade , Idoso , Humanos , Masculino , Feminino , Diabetes Mellitus Tipo 2/sangue , Glicemia/análise , Aspirina/farmacologia , Insulina/sangue , Peso Corporal , Aspirina/administração & dosagem , Insulina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...